Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 11755-11769, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563904

RESUMO

We present a combined experimental and theoretical study of the photophysics of 5-benzyluracil (5BU) in methanol, which is a model system for interactions between nucleic acids and proteins. A molecular dynamics study of 5BU in solution through efficient DFT-based hybrid ab initio potentials revealed a remarkable conformational flexibility - allowing the population of two main conformers - as well as specific solute-solvent interactions, which both appear as relevant factors for the observed 5BU optical absorption properties. The simulated absorption spectrum, calculated on such an ensemble, enabled a molecular interpretation of the experimental UV-Vis lowest energy band, which is also involved in the induced photo-reactivity upon irradiation. In particular, the first two excited states (mainly involving the uracil moiety) both contribute to the 5BU lowest energy absorption. Moreover, as a key finding, the nature and brightness of such electronic transitions are strongly influenced by 5BU conformation and the microsolvation of its heteroatoms.


Assuntos
Ácidos Nucleicos , Simulação de Dinâmica Molecular , Conformação Molecular , Solventes , Soluções
2.
J Chem Theory Comput ; 19(23): 8751-8766, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991892

RESUMO

Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach. First, the linear response time-dependent density functional (LR-TDDFT) formalism was employed to characterize excitation energies and spacing among electronic levels (the electronic layouts). Then, to understand the ultrafast (femtosecond) charge dynamics on the molecular scale, we relied on the nonperturbative mean-field quantum electronic dynamics via real-time (RT-) TDDFT. Three vibrational modes were selected, representative for collective nuclear movements that can have a significant influence on the electronic structure: two involving NCS- ligands and one involving dcbpy ligands. As main results, we observed that such MLCT states, under vibrational distortions, are strongly affected and a faster interligand electron transfer mechanism is observed along with an increasing MLCT character of the adiabatic electronic states approaching closer in energy due to the vibrations. Such findings can help both in providing a molecular picture of multidimensional vibro-electronic spectroscopic techniques, used to characterize ultrafast coherent and noncoherent dynamics of complex systems, and to improve dye performances with particular attention to the study of energy or charge transport processes and vibronic couplings.

3.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110644

RESUMO

Electronic properties and absorption spectra are the grounds to investigate molecular electronic states and their interactions with the environment. Modeling and computations are required for the molecular understanding and design strategies of photo-active materials and sensors. However, the interpretation of such properties demands expensive computations and dealing with the interplay of electronic excited states with the conformational freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining time dependent density functional theory and ab initio molecular dynamics (MD) have become very powerful in this field, although they require still a large number of computations for a detailed reproduction of electronic properties, such as band shapes. Besides the ongoing research in more traditional computational chemistry fields, data analysis and machine learning methods have been increasingly employed as complementary approaches for efficient data exploration, prediction and model development, starting from the data resulting from MD simulations and electronic structure calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium complex in solution at room temperature. The K-medoids clustering technique is applied and is proven to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with no loss in the accuracy and it also provides an easier understanding of the representative structures (medoids) to be analyzed on the molecular scale.

4.
J Chem Theory Comput ; 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602443

RESUMO

Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.

5.
JACS Au ; 3(1): 70-79, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711100

RESUMO

Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO2 and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N34- dye ( [Ru(dcbpy)2(NCS)2]4-, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands. ILET is observed in water solution after photoexcitation in the ∼400 nm MLCT band, and assessment of its ultrafast time-scale is here given through a real-time electronic dynamics simulation on the basis of state-of-the-art electronic structure methods. Indirect effects of water at finite temperature are also disentangled by investigating the system in a symmetric gas-phase structure. As main result, remarkably, the ILET mechanism appears to be based upon a purely electronic evolution among the dense, experimentally accessible, MLCT excited states manifold at ∼400 nm, which rules out nuclear-electronic couplings and proves further the importance of the dense electronic manifold in improving the efficiency of dye sensitizers in solar cell devices.

6.
J Phys Chem A ; 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36174118

RESUMO

The interplay between light absorption and the molecular environment has a central role in the observed photophysics of a wide range of photoinduced chemical and biological phenomena. The understanding of the interplay between vibrational and electronic transitions is the focus of this work, since it can provide a rationale to tune the optical properties of charge transfer (CT) materials used for technological applications. A clear description of these processes poses a nontrivial challenge from both the theoretical and experimental points of view, where the main issue is how to accurately describe and probe drastic changes in the electronic structure and the ultrafast molecular relaxation and dynamics. In this work we focused on the intermolecular CT reaction that occurs upon photon absorption in a π-stacked model system in dichloromethane solution, in which the 1-chloronaphthalene (1ClN) acts as the electron donor and tetracyanoethylene (TCNE) is the electron acceptor. Density functional theory calculations have been carried out to characterize both the ground-state properties and more importantly the low-lying CT electronic transition, and excellent agreement with recently available experimental results [Mathies, R. A.; et al. J. Phys. Chem. A 2018, 122 (14), 3594] was obtained. The minima of the ground state and first singlet excited state have been accurately characterized in terms of spatial arrangements and vibrational Raman frequencies, and the CT natures of the first two low-lying electronic transitions in the absorption spectra have been addressed and clarified too. Finally, by modeling the possible coordination sites of the TCNE electron acceptor with respect to monovalent ions (Na+, K+) in an implicit solution of acetonitrile, we find that TCNE can accommodate a counterion in two different arrangements, parallel and orthogonal to the C═C axis, leading to the formation of a contact ion pair. The nature of the counterion and its relative position entail structural modifications of the TCNE radical anion, mainly the central C═C and C≡N bonds, compared to the isolated case. An important red shift of the C═C stretching frequency was observed when the counterion is orthogonal to the double bond, to a greater extent for Na+. On the contrary, in the second case, where the counterion ion lies along the internuclear C═C axis, we find that K+ polarizes the electron density of the double bond more, resulting in a greater red shift than with Na+.

7.
Phys Chem Chem Phys ; 23(40): 22885-22896, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668499

RESUMO

Environmental effects can drastically influence the optical properties and photoreactivity of molecules, particularly in the presence of polar and/or protic solvents. In this work we investigate a negatively charged Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- [dcbpy = (4,4'-dicarboxy-2,2'-bipyridine)], in water solution, since this system belongs to a broader class of transition-metal compounds undergoing upon photo-excitation rapid and complex charge transfer (CT) dynamics, which can be dictated by structural rearrangement and solvent environment. Ab initio molecular dynamics (AIMD) relying on a hybrid quantum/molecular mechanics scheme is used to probe the equilibrium microsolvation around the metal complex in terms of radial distribution functions of the main solvation sites and solvent effects on the overall equilibrium structure. Then, using our AIMD-based generalized normal mode approach, we investigate how the ligand vibrational spectroscopic features are affected by water solvation, also contributing to the interpretation of experimental Infra-Red spectra. Two solvation sites are found for the ligands: the sulfur and the oxygen sites can interact on average with ∼4 and ∼3 water molecules, respectively, where a stronger interaction of the oxygen sites is highlighted. On average an overall dynamic distortion of the C2 symmetric gas-phase structure was found to be induced by water solvation. Vibrational analysis reproduced experimental values for ligand symmetric and asymmetric stretchings, linking the observed shifts with respect to the gas-phase to a complex solvent distribution around the system. This is the groundwork for future excited-state nuclear and electronic dynamics to monitor non-equilibrium processes of CT excitation in complex environments, such as exciton migration in photovoltaic technologies.

8.
J Phys Chem B ; 125(36): 10273-10281, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34472354

RESUMO

The excited state proton transfer (ESPT) reaction from the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) to an acetate molecule has been investigated in explicit aqueous solution via excited state ab initio molecular dynamics simulations based on hybrid quantum/molecular mechanics (QM/MM) potentials. In all the trajectories, the direct proton transfer has been observed in the excited state within 1 ps. We find that the initial structural configuration extracted from the ground state distribution strongly affects the ESPT kinetics. Indeed, the relative orientation of the proton donor-acceptor pair and the presence of a water molecule hydrogen bonded to the phenolic acid group of the pyranine are the key factors to facilitate the ESPT. Furthermore, we analyze the vibrational fingerprints of the ESPT reaction, reproducing the blue shift of the acetate CO stretching (COac), from 1666 to 1763 cm-1 testifying the transformation of acetate to acetic acid. Finally, our findings suggest that the acetate CC stretching (CCac) is also sensitive to the progress of the ESPT reaction. The CCac stretching is indeed ruled by the two vibrational modes (928 and 1426 cm-1), that in the excited state are alternately activated when the proton is shared or bound to the donor/acceptor, respectively.


Assuntos
Sulfonatos de Arila , Prótons , Acetatos , Água
9.
Biomolecules ; 11(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356672

RESUMO

In the search for new therapeutic strategies to contrast SARS-CoV-2, we here studied the interaction of polydatin (PD) and resveratrol (RESV)-two natural stilbene polyphenols with manifold, well known biological activities-with Spike, the viral protein essential for virus entry into host cells, and ACE2, the angiotensin-converting enzyme present on the surface of multiple cell types (including respiratory epithelial cells) which is the main host receptor for Spike binding. Molecular Docking simulations evidenced that both compounds can bind Spike, ACE2 and the ACE2:Spike complex with good affinity, although the interaction of PD appears stronger than that of RESV on all the investigated targets. Preliminary biochemical assays revealed a significant inhibitory activity of the ACE2:Spike recognition with a dose-response effect only in the case of PD.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , Glucosídeos/farmacologia , Resveratrol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Estilbenos/farmacologia , COVID-19/metabolismo , Descoberta de Drogas , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/metabolismo
10.
Front Mol Biosci ; 7: 569990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195416

RESUMO

The Green Fluorescent Protein (GFP) is a widely studied chemical system both for its large amount of applications and the complexity of the excited state proton transfer responsible of the change in the protonation state of the chromophore. A detailed investigation on the structure of the chromophore environment and the influence of chromophore form (either neutral or anionic) on it is of crucial importance to understand how these factors could potentially influence the protein function. In this study, we perform a detailed computational investigation based on the analysis of ab-initio molecular dynamics simulations, to disentangle the main structural quantities determining the fine balance in the chromophore environment. We found that specific hydrogen bonds interactions directly involving the chromophore (or not), are correlated to quantities, such as the volume of the cavity in which the chromophore is embedded and that it is importantly affected by the chromophore protonation state. The cross-correlation analysis performed on some of these hydrogen bonds and the cavity volume, demonstrates a direct correlation among them and we also identified the ones specifically involved in this correlation. We also found that specific interactions among residues far in the space are correlated, demonstrating the complexity of the chromophore environment and that many structural quantities have to be taken into account to properly describe and understand the main factors tuning the active site of the protein. From an overall evaluation of the results obtained in this work, it is shown that the residues which a priori are perceived to be spectators play instead an important role in both influencing the chromophore environment (cavity volume) and its dynamics (cross-correlations among spatially distant residues).

11.
J Comput Chem ; 41(26): 2228-2239, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32770577

RESUMO

Solute-solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical-physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute-solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.


Assuntos
Metanol/química , Modelos Químicos , Simulação de Dinâmica Molecular , Solventes/química , Água/química , Proteínas de Fluorescência Verde/química , Solubilidade
12.
J Comput Chem ; 41(20): 1835-1841, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32500950

RESUMO

Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3-Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms ruling the reactivity of many biological and catalytic systems.


Assuntos
Elétrons , Fenóis/química , Prótons , Transporte de Elétrons , Fenóis/metabolismo
13.
Biopolymers ; 109(10): e23225, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30091460

RESUMO

Fe(III)-Mimochrome VI (MC6) is a recently reported artificial heme-peptide conjugate system with a high peroxidase-like activity. By design, its structure features a five-coordinated Fe(III)-deuteroporphyrin active site, embedded in a compact α-helix-heme-α-helix "sandwich" motif. Up to now, no detailed MC6 structural characterization is available. In this work we propose a theoretical investigation based on molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) optimizations, aimed to shed light on several Fe(III)-MC6 structural features and to validate the de novo designed fold. Key structural elements were analyzed to achieve indirect insight relevant to understand Fe(III)-MC6 catalytic performances in solution. Extensive MD simulations showed a partial stability of the "sandwich" fold in water solution. The smaller peptide chain bonded to the heme revealed a high conformational freedom, which promoted the exposition of the heme distal side to the solvent. Regarding the accessibility of water molecules, even in Fe(III)-MC6 "closed" structure the heme cavity appeared hydrated, suggesting an easy accessibility by exogenous ligands. Fe(III)-MC6 structure in both high and low spin states was then further characterized through hybrid QM/MM optimizations. In particular, an accurate description of the active site structure was obtained, allowing a direct comparison of Fe(III)-MC6 coordination environment with that observed in the Horseradish Peroxidase crystal structures. Our results suggest a structural similarity between Fe(III)-MC6 and the natural enzyme. This study supports the interpretation of data from experimental Fe(III)-MC6 structural and functional characterization and the rational design of new artificial mimics with improved catalytic performances.


Assuntos
Heme/química , Heme/metabolismo , Modelos Moleculares , Peroxidases/química , Peroxidases/metabolismo , Ligação de Hidrogênio , Ferro/química , Simulação de Dinâmica Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Teoria Quântica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...